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Abstract

Within the framework of additive plasticity, an objective stress update algorithm has been proposed. The procedure

is implemented in such way that the extension from a standard small strain FE code to the ®nite strain range is

straightforward, and objectivity can be retained for any choice of the intermediate con®guration. The additional

computational cost only includes some geometrical manipulations. For the Newton±Raphson iteration method, a

closed-form solution of the consistent tangent is derived by direct linearization of the stress update algorithm. Nu-

merical examples show a quadratic rate of convergence with the proposed viscoplastic model. The analysis of a tensile

test ®rst shows a shear band with a ®nite thickness independent of the ®nite element size. At large deformation, the

shear band pattern transforms into a necking failure mode. As a second example, a thin sheet tensile test is analyzed. A

necking failure mode leads to global softening even though, locally, the material is still hardening. Although viscoplastic

regularization is used, the results still show a mesh dependence for deformations over 40%. Ó 2000 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Numerical modeling of ®nite strain plasticity problems involves two basic types of nonlinearity: material
nonlinearity (plastic behavior) and geometrical nonlinearity (®nite strain). Nonlinear material behavior is
often described by a rate-form constitutive equation, relating the rate of stress to the rate of strain and some
internal variables (Malvern, 1969). If geometrical nonlinearity is considered, the choice of proper stress and
strain rates is crucial, because the principle of objectivity should be respected; the constitutive equation
must be independent of the observer. This is only achieved when objective tensor quantities are employed.
A large body of literature has been concerned with the development of objective rates which, remarkably,
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extends to recent dates (Simo and Marsden, 1984). The basic idea is that rigid body rotations induce no
straining of a material, and this fact must be properly captured by the stress rate, which leads to the so-
called incremental objectivity or material frame indi�erence.

Several stress update algorithms can be found in literature (Simo and Marsden, 1984; Simo and Ortiz,
1985; Cuitino and Ortiz, 1992; Rodriguez-Ferran et al., 1997). Conceptually, the formulation of an in-
crementally objective algorithm proceeds as follows. The given (objective) spatial rate constitutive equation
is mapped to an intermediate con®guration, which is una�ected by superposed spatial rigid body motions.
A time-stepping algorithm is then performed in this local con®guration and the discrete equation is mapped
back to the Eulerian description. In the actual implementation of this idea, two basic methodologies can be
adopted:

(1) The convective or material representation (Simo and Ortiz, 1985; Cuitino and Ortiz, 1992; Rodri-
guez-Ferran et al., 1997) ± in this approach, one exploits the fact that objects in the convective represen-
tation remain unaltered under supposed spatial rigid body motion. Therefore, an objective algorithm can be
obtained by appropriate tensorial transformation of the objects between spatial and material representa-
tion. Equivalently, by using convected coordinates, the equations automatically satisfy the objectivity re-
quirement.

(2) The local rotated representation (Simo and Marsden, 1984) ± in this approach, the evolution
equation is transformed to a locally cartesian rotating coordinate system, which is constructed precisely as
to ensure that the rotated objects (the Jaumann derivative) remain unaltered under superposed spatial rigid
body motion. The stress update is then performed in the rotated description, and the discrete equation is
subsequently transformed back to the spatial con®guration.

The crucial computational aspect in the second methodology is the determination of the rotated local
con®guration. As pointed out by Hughes (1983), the problem can be reduced to the numerical integration
of an initial value problem that generates a one-parameter subgroup of proper orthogonal transformations.
However, a closed form linearization of the algorithm remains an open question, and therefore, the for-
mulation of a consistent tangent operator cannot be successful. In this paper, the convective representation
will be adopted to develop a large-strain ®nite element (FE) code, because it leads to a simpli®cation of the
numerical time integration of the constitutive equation and yields a closed-form solution of the consistent
tangent operator. This is the new contribution of this paper. The procedure is implemented in such way that
the extension from a standard small strain FE code to the ®nite strain range is straightforward, and ob-
jectivity can be retained for any choice of the intermediate con®guration. The additional computational
cost only includes some geometrical manipulations.

The paper is organized as follows: In Section 2, the necessary continuum mechanical notions needed for
the description of the stress update algorithm in Section 3 are given. In Section 4, the consistent tangent is
derived for a ®nite strain viscoplasticity modeling. In Section 5, a stretch test is described in which small
deformations show shear bands of ®nite thickness, which is set up by the viscous length scale parameter,
and large deformations demonstrate a transition from shear banding to necking. A thin sheet tensile test is
analyzed to further explore the necking failure mode. Although viscoplastic regularization is used, mesh
dependence is still observed for very large deformations.

2. Kinematics

In standard nonlinear solid mechanics, two coordinate systems are adopted (Fig. 1). To identify a
material particle, a material or convected coordinate X I is introduced. Further to describe the motion of a
material point, a spatial coordinate yi is needed. If we consider a material particle P which occupies position
Y � Y�P ; 0� in space at the undeformed state, then, at the current time this material point will be denoted
by a spatial vector y � y�p; t�. Note that we will use upper case letters to denote material quantities as-
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sociated with the undeformed con®guration and lower case letters for the deformed con®guration. For
example, the material line element PQ (Fig. 1) in the current time can be written as

dy�t� � dyi�t�ei: �1�
Eq. (1) is described in the spatial coordinate system with an orthonormal base vector ei. Alternatively, the
material line element can be written in the material coordinate system as

dx�t� � dxigi�t� �2�
with the deformed local covariant base vector

gi�t� �
oy�t�
oxi
� oyj�t�

oxi
ej � oyj�t�

oY I
ej; �3�

where we choose the material coordinate identical to the spatial coordinate at the initial state xi � X I � Y I .
Note that in general, the material base vector gi is not orthonormal. For convenience of tensor algebra in
the material description, the respective contravariant base vector gi is frequently used, i.e.

gi � gj � di
j; �4�

where d is the Kronecker delta. The covariant and contravariant base vectors can be mapped to each other
as

gi � gijg
j and gi � gijgj �5�

by the covariant and contravariant components of the metric tensor

g � gi 
 gi � gi 
 gi � gijg
i 
 gj � gijgi 
 gj: �6�

If we introduce the so-called deformation gradient tensor

F � gi 
GI � oyi

oY J
ei 
 eJ ; �7�

one can obtain the following relationship:

gi � F �GI ; �8�
which maps the initial material base vector �GI � gi�0�� onto the current material base vector, or alter-
natively,

Fig. 1. Coordinate systems and base vectors.
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dy � F � dY �9�
translates a material line element at the reference time to the current location, respectively.

Note that in the spatial description (1), the base vector ei is constant and the components yi � yi�t� vary
during the deformation process. In the material description (2), on the other hand, the components xi

remain constant (invariant) and the material base vector gi � gi�t� records the geometrical and kinematic
aspects.

The convected coordinates allow strain to be de®ned in a general way, which will naturally lead to the
familiar strain tensors. The strain tensor is de®ned such that when it operates on a material line element, it
represents a measure of the deformation of its arc length,

dl2 ÿ dL2 � dx � dxÿ dX � dX � gij dxidxj ÿ GIJ dX IdX J : �10�
The Lagrangian strain tensor E and the Eulerian strain tensor e are de®ned by

E � 1
2
�gij ÿ GIJ �GI 
GJ ; �11�

e � 1
2
�gij ÿ GIJ �gi 
 gj �12�

with respect to the undeformed and deformed con®gurations, respectively. With E operating on dX and e

operating on dx, leads to the measure of the change of arc length (10).
By analogy with the strain tensor, the strain-rate tensor can be de®ned such that when it operates on the

corresponding line element, it gives the rate of deformation

d

dt
1
2
�dl2
� ÿ dL2�� � 1

2
_gij dxidxj: �13�

Note that dxi are convected, dL and Gij are constant during the deformation process. The Lagrangian and
the (objective) Eulerlain strain-rate tensors (commonly called as the rate of deformation tensor) are de®ned
by

_E � 1
2
_gijG

I 
GJ ; �14�

�e � 1
2
_gijg

i 
 gj; �15�
respectively, so that when they operate on di�erent con®gurations, the result is the same quantity of Eq.
(13). Note that _E is the material time derivative of E, but �e is not the material time derivative of e since
_gi 6� 0.

It should be emphasized that the de®nition of strain rates must satisfy the so-called material frame
indi�erence, so that a rigid body motion will not induce straining of the material. Recall that in the con-
vected description, the material base vectors re¯ect the geometrical and kinematic aspects, and the corre-
sponding components are constant with respect to their material base vectors. Therefore, in the convected
frames, we can ignore the base vectors while processing the tensor algebra with the components and re-
storing the tensor quantity with respect to the corresponding material base vectors (Rodriguez-Ferran
et al., 1997). For example, giving the Kirchho� stress tensor

s � sijgi 
 gj �16�
in the convected expression, one can immediately build up its objective rate

�s � _sijgi 
 gj �17�
by ignoring the base vectors in the time derivative. Similarly, by applying the inverse process, one obtains
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Z t

0

�sdt �
Z t

0

_sij dt
� �

gi 
 gj � �sij�t� ÿ sij�0��gi 
 gj � s�t�; �18�

where the undeformed state is assumed stress free. A large body of literature has been concerned with the
development of objective stress rates. However, one can show that any possible choice is a particular case of
the Kirchho� stress rate de®ned in Eq. (17).

3. Finite strain elasto-viscoplasticity

3.1. Constitutive equations

In nonlinear solid mechanics, the material behavior is often described by a rate-form (incremental)
constitutive equation. The particular case of hypoelastic materials, where the stress rate (stress incremental)
depends linearly on the elastic Eulerian strain-rate tensor (or the rate of deformation tensor) is used here
via

�s � a : ��eÿ�ep� � c :�e; �19�

where a, c are the elastic and elasto-plastic moduli, respectively. Furthermore, the additive decomposition
of elastic and plastic parts of the Eulerian strain rate is assumed, i.e.

�e ��ee ��ep: �20�

Note that Eq. (19), in general, is not derivable from a stored energy function which leads to the so-called
hyperelastic formulation. However, the advantage of the hypoelastic model relies on the conceptual sim-
plicity of its formulation. Furthermore, for most problems in metal plasticity, the elastic strain is small with
respect to the plastic deformation; therefore, the di�erence in the formulation of the elastic response has
little or no e�ect on the numerical simulation. It should be stated that using hypoplasticity in a rate form
has the e�ect that classical hyperelasticity is not recovered for zero plastic ¯ow.

Similar to small strain plasticity, the plastic ¯ow can be expressed as

�ep � _kn; n � o/
os
; �21�

where k is the plastic multiplier and n the direction of the plastic ¯ow, which is the gradient of the plastic
potential function /. To determine the plastic multiplier, the loading±unloading conditions should be
imposed in a Kuhn±Tucker form as

_kP 0; U6 0; _kU � 0; _k _U � 0; �22�
where a rate dependent yield function U � U�s, j, �j� is introduced with a number of internal variables,
collected in a vector j, which describe the plastic deformation history. It should be mentioned that in this
so-called consistency model (Wang et al., 1997), the stress remains on the yield surface, which is di�erent
from the well known overstress laws such as Perzyna and Duvaut±Lions. The consistency model, in
comparison with the overstress models, has the advantage that it can be easily implemented in the classical
rate-independent plasticity (Wang et al., 1997). For simplicity and without loss of generality, we consider an
isotropic hardening/softening problem, where the vector j reduces to a scalar quantity, the so-called
equivalent plastic strain j, which can be speci®ed as
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j �
Z t

0

_jdt; _j �
��������������
2
3
�ep :�ep

q
: �23�

3.2. Objective integration algorithms

To obtain a framework suitable for the application of a displacement based FE method at ®nite strain,
the rate of constitutive equation should be integrated. From a computational point of view, the essential
requirement for integration of Eq. (19) is the principle of material frame indi�erence. From a physical point
of view, it requires no strain and stress of a material upon rigid body motion. Recall that in the material
description, all quantities automatically satisfy the objectivity requirement, because the base vectors record
the geometrical and kinematic aspects. However, because the base vectors are not orthonormal, the re-
corded data of experiments and also the implementation of the FE code are normally based on the cartesian
reference frame. Furthermore, the current (deformed) con®guration itself is unknown in the problem. It is
convenient to refer all quantities to a known reference con®guration, cf. the undeformed con®guration.
Therefore, the formulation of incrementally objective algorithms proceeds as follows (Fig. 2):

(1) Pull back the Kirchho� stress rate �s onto the second Kirchho� stress rate

_S � Fÿ1 ��s � FÿT: �24�
(2) Apply the generalized mid-point rule for an approximation of the rates

Sÿ Sn � _Sn�hDt: �25�
(3) Push forward the integrated results to the current con®guration by using relations

Sÿ Sn � Fÿ1 � s � FÿT ÿ Fÿ1
n � sn � FÿT

n : �26�
Accordingly, the integration of Eq. (19) follows asZ n�1

n
�sdt �

Z n�1

n
F � _S � FT dt � Fn�h � � _Sn�hDt� � FT

n�h � Fn�h � �Sÿ Sn� � FT
n�h: �27�

By introducing the relative deformation gradients (Fig. 3),

fn�h � Fn�h � Fÿ1
n ; �28�

g � F � Fÿ1
n�h; �29�

one obtainsZ n�1

n
�s dt � gÿ1 � s � gÿT ÿ fn�h � sn � fT

n�h; �30�

Fig. 2. The algorithm of an incrementally objective formulation.
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where geometrically, fn�h can be interpreted as a push-forward of the stress of Xn onto Xn�h and g a push-
forward of the stress of Xn�h onto Xn�1, respectively.

Similarly, the integration of the Eulerian strain rate yieldsZ n�1

n
�e dt �

Z n�1

n
FÿT � _E � Fÿ1 dt � FÿT

n�h � � _En�hDt� � Fÿ1
n�h � FÿT

n�h � �Eÿ En� � Fÿ1
n�h: �31�

By de®nition of a relative (incremental) Eulerian strain,

e � 1
2

I
h
ÿ �fn�1 � fT

n�1�ÿ1
i
; �32�

where I is the identity tensor, we haveZ n�1

n
�e dt � gT � e � g � ên�h: �33�

With the approximation of Eqs. (30) and (33) at hand, the integration of Eq. (19) follows

sÿ fn�1 � sn � fT
n�1 � g � �cn�h : gT � e � g� � gT: �34�

If the incremental motion is rigid, then fn�1 is the rotation tensor and e vanishes because
fn�1 � fT

n�1 � fn�1 � fÿ1
n�1 � I. Therefore, we end up with s � fn�1 � sn � fT

n�1, which is the requirement of the
incremental objectivity (Malvern, 1969). Note that objectivity of the integration over an interval �tn; tn�1�
can be retained for any choice of the intermediate con®guration Xn�h with h 2 �0; 1�, not necessarily re-
stricted to the mid-point rule with h � 1

2
. In fact, the stability and accuracy of the return mapping algorithm

is dependent on the adjustable interpolation parameter h and the numerical examples in Sections 5.1 and
5.2 demonstrate that a larger value of h leads to a faster convergence.

3.3. Return mapping algorithm

Assuming that the components of the elastic moduli in the cartesian coordinate are constant, one can
then exclude the elastic moduli from integration. Again, by evaluating Eq. (19) at the Xn�h one obtains

ŝn�h � gÿ1 � s � gÿT � ŝtr
n�h ÿ Dkn�han�h : nn�h; �35�

where the trial stress (assuming not yielding)

ŝtr
n�h � fn�h � sn � fT

n�h � an�h : ên�h �36�
is introduced. Note that plastic ¯ow is approximated on Xn�h by means of

Fig. 3. Con®gurations and the corresponding deformation gradients.

W.M. Wang, L.J. Sluys / International Journal of Solids and Structures 37 (2000) 7329±7348 7335



Dkn�h � _kn�hDt; �37�
which is consistent with the integration of strain and stress rates. To determine the incremental plastic
multiplier Dkn�h, the yield function and the plastic ¯ow direction should be speci®ed. In general, they may
depend on the speci®ed material and the interesting range of the strain. For most problems in metal
plasticity, it is popular to use a J2 ¯ow theory, in which the von Mises yield function and the associative
plastic ¯ow are given by

/ � U �
�������
3J2

p
ÿ �r�k; _k�; �38�

where following standard notation, J2 is the second invariant of the deviatoric stress s, i.e.

J2 � 1
2
s : s � 1

2
jsj2; s � sÿ 1

3
tr�s�I �39�

and �r is the yielding stress which is a function of the plastic multiplier and its rate. The direction of the
plastic ¯ow (Eq. (21)) can be expressed as

n � o/
os
� o/

oJ2

oJ2

os
:
os

os

� �
� 3

2
�������
3J2

p �s� �
���
3

2

r
s

jsj ; �40�

which only includes the deviatoric part of s. By using the relationship 1

r � n : a � a : n � 2ln � 2lntr
n�h �41�

Eq. (35) leads to

ŝn�h � ŝtr
n�h ÿ 2lDkn�hntr

n�h; �42�
or in the deviatoric expression

ŝn�h � ŝtr
n�h ÿ 2lDkn�hntr

n�h � 1

�
ÿ 2lDkn�h

��
3
2

q
ĵstr

n�hjÿ1

�
ŝtr

n�h: �43�

Accordingly, the yield function at Xn�h yields

/n�h �
���
3

2

r
ĵsn�hj ÿ �rn�h �

���
3

2

r
ĵstr

n�hj ÿ 3lDkn�h ÿ �rn�h � 0: �44�

In a discrete form, Eq. (44) leads to

/�i�1�
n�h � /�i�n�h � ntr

n�h : dŝtr
n�h ÿ 3ldkn�h ÿ h�i�dkn�h � 0: �45�

Therefore, the iterative incremental plastic multiplier reads

dkn�h � 1

3l� h�i�
/�i�n�h

h
� ntr

n�h : dŝtr
n�h

i
; �46�

where the e�ective softening/hardening parameter h�i� reads

h�i�n�h �
o�r
ok

"
� 1

Dt
o�r

o _k

#�i�
n�h

: �47�

1 Note that n is the covariant tensor r is the contravariant tensor. For von Mises associative ¯ow, the plastic ¯ow direction is

determined by the trial stress.

7336 W.M. Wang, L.J. Sluys / International Journal of Solids and Structures 37 (2000) 7329±7348



If we use local iterations during a global iteration, the iterative incremental stress dŝtr
n�h vanishes from Eq.

(46). In Appendix A.1 the stress update algorithm for J2 ¯ow theory is outlined.
Note that the stress is updated in a straightforward manner using the standard return mapping algo-

rithm in a small strain FE code. The additional computational cost for a extension to a ®nite strain FE code
only includes some geometrical manipulations (cf. push forward and pull back).

4. The consistent tangent

In an implicit displacement based FE formulation, equilibrium in a time step can be obtained by means
of the Newton±Raphson method, which linearizes the nonlinear equilibrium equation at each iteration and
yields the so-called consistent tangent. Such a consistent tangent plays a crucial role in reducing the com-
putation time. In this section, we will outline the consistent linearization of the discretized momentum
balance equation and show that the return mapping algorithm discussed in Section 3 permits the com-
putation of the consistent tangent in a closed form.

4.1. Momentum balance

We consider a body B with volume X and surface oX � otX [ ouX, where otX and ouX are the traction
and kinematic boundaries respectively with otX \ ouX � 0. In displacement based FE formulations, the
momentum balance or principle of virtual work is normally ful®lled, with respect to the current con®gu-
ration, in a weak form asZ

X
�$g : s�Jÿ1 dX �

Z
X

g � bdXÿ
Z

otX
g � tdS; �48�

where s denotes the Piola±Kirchho� stress, g is the virtual displacement, b and t represent the body force
and surface traction, respectively. In the standard incremental approach, the stress update follows:

s � s�u; Un; Dt�; �49�
where u is the incremental deformation and Un the set of initial conditions. If one chooses to solve the non-
linear virtual work equation (48) by means of an iterative Newton±Raphson method, the (I � 1)th updated
stress reads

s�I�1� � s�I� � ds�I� �50�
and the virtual work (Eq. 48) can be rewritten asZ

X
�$g : ds�Jÿ1 dX �

Z
X

g � bdXÿ
Z

otX
g � tdS ÿ

Z
X
�$g : s�I��Jÿ1 dX; �51�

where J is the Jacobian. After lengthy but straightforward manipulations, the left-hand side can be ex-
pressed as

$g : ds � $g : k : $�du� �52�
with the so-called consistent tangent k, which will be derived in Section 4.2.

4.2. The tangent modulus

Recall that the plastic ¯ow is evaluated on Xn�h, and consequently, the updated stress ŝn�h as
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ŝn�h � ŝtr
n�h ÿ $kn�hrtr

n�h �53�
with the trial stress

ŝtr
n�h � fn�h � sn � fT

n�h � an�h : ên�h �54�
pushed-forward to the current con®guration Xn�1, i.e.

s � g � ŝn�h � gT �55�
by the relative deformation gradient g. Di�erentiation of Eq. (55) leads to

ds � dg � gÿ1 � s
h

� �dg � gÿ1 � s�T
i
� g � dŝn�h � gT: �56�

Using Eqs. (46) and (53) enables us to rewrite the last term of Eq. (56) in the form

g � dŝn�h � gT � dstr ÿ Dkn�hqtr : dstr ÿ ĥÿ1 �rtr�� 
 �ntr : dstr��; �57�
where

qtr
n�h �

ortr
n�h

ostr
n�h

; �58�

ĥ � h�i�n�h � 3l; �59�
and the push-forward results 2

dstr � g � dŝtr
n�h � gT; �60�

rtr � g � rtr
n�h � gT; �61�

ntr � gÿT � ntr
n�h � gÿ1; �62�

�q�ijkl � gim gjn gÿ1
sk gÿ1

tl �qn�h�mnst �63�
have been introduced, respectively. Furthermore, straightforward di�erentiation of Eq. (54) gives

dŝtr
n�h � dfn�h � sn � fT

n�h

h
� �dfn�h � sn � fT

n�h�T
i
� an�h : dgT � e � g

h
� �dgT � e � g�T � gT � de � g

i
: �64�

Along with Eq. (64), using the following relationships,

dfn�h � sn � fT
n�h � hdf̂ � ŝn � gÿT; �65�

ŝn � fn�1 � sn � fT
n�1; �66�

df̂ � dfn�1 � fÿ1
n�1 � dF � Fÿ1 � $�du�; �67�

de � 1
2

b � df̂
h

� �b � df̂�T
i
; b � �fn�1 � fT

n�1�ÿ1
; �68�

dĝ � dg � gÿ1 � i � df̂; i � �Iÿ hg�; �69�

2 Note that s and r are contravariant tensors, n is a covariant tensor and q is a mixed contravariant±covariant tensor.
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g � a : �gT � e � g�� � � gT � â : e; �70�
Eq. (60) yields

dstr � h g � df̂ � ŝn

h
� �g � df̂ � ŝn�T

i
� â : e � dĝ

h
� dĝT � e� de

i
: �71�

By applying tensor algebra in Eq. (71), one obtains

dstr � ktr : $�du�; �72�
where

ktr
ijkl � h�gik�ŝn�lj � gjk�ŝn�li� � âijab dlaecbick� � dlbecaick� � âijab

1
2
�bakdbl

� � bkbdal�
�
; �73�

âijab � giegjf gaggbh�an�h�efgh: �74�
Substitution of Eq. (71) into Eq. (56) leads to

k � ktr � kc ÿ kp; �75�
where

kc
ijkl � iikslj � ijksli �76�

kp � ĥÿ1 �rtr�� 
 �ntr : ktr��� Dkn�hqtr : ktr: �77�
In general, the tangent sti�ness (Eq. 75) lacks the symmetry, and the formulation process needs many tensor
multiplications and inverse calculations. Furthermore, the stability of the return mapping algorithm, in
general, requires a large value of interpolation parameter h, especially when larger strain increments are
considered. If we take h � 1, the relative deformation tensor g becomes the identity tensor, and therefore,
the tensor i vanishes from Eq. (75). Rewriting Eq. (75), one obtains the consistent tangent

k � ke � kg ÿ kp; �78�
where

ke
ijkl � �kdijbkl � l�bikdjl � bjkdil�; �79�

kg
ijkl � �dik�ŝn�lj � djk�ŝn�li�; �80�

kp � 4l
h� 3l

ntr
h

 �ntr � ŝn � lb � ntr�

i
� 2l�������

3J2

p Dkn�h kp1
� ÿ kp2

� �81�

with

�kp1�ijkl � 3
2
�dik�ŝn�lj � djk�ŝn�li� � 3

2
l�bikdjl � bjkdil�; �82�

kp2 � I
 �ŝn � lb� � ntr 
 �ntr � ŝn � lb � ntr�: �83�

5. Numerical examples

To demonstrate the performance of the consistency viscoplastic model in conjunction with the ®nite
strain numerical scheme discussed before, numerical examples are presented in this chapter. All numerical
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simulations are performed by using the Newton±Raphson iteration procedure with a fully backward Euler
integration scheme.

5.1. Strip in tension-shear banding

First, the in¯uence of geometrical nonlinearity in the evolution of the shear band is investigated. It is well
known that the onset of strain softening, in the classical small strain theory, will result in the mathematical ill
posedness of the ®eld equations. No length scale is involved in the evolution of the shear band, and therefore,
the localization zone stays con®ned to the size of one element. Consequently, a ®ner element size results in a
smaller shear band thickness with higher peak strains. To investigate the in¯uence of geometrical nonlin-
earities in the evolution of the shear band, the simulation of a strip in tension as shown in Fig. 4 is carried
out. The strip is constrained at the bottom, while a constant velocity v � 20 mm/s is imposed at the top. Von
Mises plasticity is used with the initial yield stress �r0 � 20 N=mm2. Strain softening is assumed via
h � ÿ0:025E with Young's modulus E � 20000 N/mm2 and Poisson's ratio m � 0:3. Two meshes (mesh 1:
10� 20, mesh 2: 20� 40) have been used with a four-noded quadrilateral plane-strain element. To avoid a
homogeneous solution, we slightly increase the width of the specimen towards the top, so that the shear band
will be initiated at the bottom left and develops with an inclination angle H � 45�, which is the analytical
solution for a 2D in®nite medium under plane-strain condition for a small strain analysis (Sluys, 1992). In
Fig. 5, the displacement patterns for both meshes have been plotted. We observe that the width of the shear
band is determined by the element size for a standard strain softening model. Deformation is localized along
a line of integration points. Mesh dependence is also obvious from the load±deformation curve. When the
mesh is re®ned, the dissipated energy is decreasing. So, the inclusion of geometrical nonlinearity in the
description of the strain softening material cannot solve this discretization dependence.

In order to solve the mesh-sensitivity problem, viscous terms can be introduced to keep the ®eld
equations well posed. Needleman (1988), Loret and Prevost (1990) and Sluys (1992) have shown that the
material rate dependence introduces a length scale e�ect into the initial value problem, even though the
constitutive equations do not explicitly contain a parameter with the dimension of length. Sluys (1992) has
demonstrated that this viscous length scale e�ect can be related to the spatial attenuation of waves that have
real wave speeds in the softening regime. Wang et al. (1996) found an expression for the internal length
scale and examined the in¯uence of a material imperfection on shear band formation.

Fig. 4. Strip in tension.
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It should be emphasized that the introduction of rate dependence has a regularization e�ect not only in
the dynamic case but also in the quasi-static case as we present here (Sluys and Wang, 1998). We use the
data set from the former calculation, but additionally introduce a linear viscosity term in the yield function
as mentioned in Section 3.1. Thus,

�r � �r0 � hj� s _j;

where j is the equivalent plastic strain and s the viscosity parameter. In Fig. 6, the displacement patterns
and the load±deformation curve have been plotted (s � 0:4 Ns/mm2). By comparison with the results of
Fig. 5, one observes that the shear band has a ®nite width which is independent of the ®nite element size.

Next, the in¯uence of viscosity in case of strain hardening is investigated. With a nearly perfect plasticity
model (h � 10ÿ6 � E), one can obtain mesh objective results without viscosity contribution (s � 0, Fig. 7),
because the ®eld equations remain well posed in case of strain hardening. If we apply a small viscosity
(s � 0:02 Ns/mm2), the same results are obtained (Fig. 8), however, one observes a faster convergence rate.
The average number of global iterations for consistency viscoplastic model is 3.6, while the standard model
takes 6:1 iterations. From a numerical point of view, the viscosity helps to constrain the deformation
process at the initial state of plasti®cation while the local strain rate is very high. When the shear band is
fully developed, the in¯uence of viscosity decreases. Therefore, the prediction of the deformation process is
more accurate and robust with a consistency viscoplastic tangent sti�ness.

Fig. 5. Mesh-dependent results with a standard strain-softening model. left: load±deformation curve, right: displacement patterns.

Fig. 6. Mesh objective results with the consistency viscoplastic model. left: load±deformation curve, right: displacement patterns.
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Finally, to demonstrate the applicability of the computational procedures at ®nite strain, we continue to
stretch the strip until the whole bar is strained up to 50% deformation. In Fig. 9 the contours of the
equivalent plastic strain are plotted at di�erent stages. First, we observe the development of the shear band
and in a later stage a necking failure mode evolves. Quadratic rate of convergence remains during the
complete deformation process.

5.2. Thin sheet tensile test-necking

Experiments on thin aluminum sheet have been carried out at CEMEF. The thin sheet is clamped at the
left end while a constant velocity v � 10 mm/min is imposed at the right (Fig. 10). Von Mises plasticity is
used with an initial yield stress �r0 � 135 Mpa. After the initiation of (visco)plasticity, plastic ¯ow is de-
scribed by a power law

�r � a� b�c� j�d �84�
with the material constants a � 25 Mpa, b � 466 Mpa, c � 0:003 and d � 0:293. Young's modulus E � 70
GPa and Poisson's ratio m � 0:3. A three-noded triangular plane-stress element has been used. In Fig. 11,
the load±deformation curves have been plotted. With the small strain algorithm, no global softening be-
havior is observed. With the contribution of geometrical nonlinearity, however, one observes the global
softening at around 20% deformation, even though, locally, the material shows hardening behavior (Eq.
(84)). From Figs. 11 and 12, one observes that before the peak load, the numerical simulation matches the
experimental data well and we have objective results for di�erent meshes (mesh 1 with 316 elements, mesh 2
with 1138 elements). However, it is to be noted that as soon as the peak load is passed, mesh-dependent
results are observed. If we introduce the viscosity term in the numerical simulations, we can bypass the peak
load without loss of objectivity (Fig. 13). However, when necking takes place, the mesh dependence re-
appears despite the use of viscoplastic regularization. The reason for this mesh-dependent result is probably
the dramatic change in geometry in the necking zone. From Fig. 13, it can be seen that with increasing
viscosity, the moment at which the results become mesh dependent is extended.

6. Conclusions

Within the framework of additive plasticity, an objective stress update algorithm has been proposed. The
procedure is implemented in such way that the extension from a standard small strain FE code to the ®nite

Fig. 7. Mesh objective results with strain hardening. left: load±deformation curve, right: displacement patterns.
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strain range is straightforward, and objectivity can be retained for any choice of the intermediate con®g-
uration. The additional computational cost only includes some geometrical manipulations. In conjunction
with the Newton±Raphson iteration method, a closed-form solution of the consistent tangent is derived by
direct linearization of the stress update algorithm. Numerical examples show a quadratic rate of conver-
gence with the proposed viscoplastic model. It has been found that the viscosity not only has the regu-
larization e�ect on the description of the localization problem, but also helps to improve the convergence
rate by constraining the deformation process at the initial state of plasti®cation, which is the crucial

Fig. 8. The in¯uence of viscosity in the case of strain hardening. (a) load±deformation curve, middle and (b) contour plot of the

equivalent plastic strain without and with viscosity.
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restriction of the time step in the numerical simulation of the localization problem. The analysis of a tensile
test ®rst shows a shear band with a ®nite thickness independent of the ®nite element size. At large de-
formation, the shear band pattern transforms into a necking failure mode. As a second example, a thin

Fig. 9. Stretch test: contours of the equivalent plastic strain at various stages.

Fig. 10. Thin sheet tensile test.
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Fig. 11. Load±displacement curve.

Fig. 12. Contour plots of equivalent plastic strain.
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Fig. 12. (continued)

Fig. 13. Load±displacement curve.
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sheet tensile test is analyzed. A necking failure mode leads to global softening even though, locally, the
material is still hardening. Although viscoplastic regularisation is used, the results still show a mesh de-
pendence for deformations over 40%.
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Appendix A

A.1. Implicit stress-update algorithm at ®nite strain

(1) Given �sn; kn� and the increment displacement u, compute the relative deformation gradients as

f � I� $nu;

fn�h � I� h$nu;

g � f � fÿ1
n�h:

(2) Compute the relative (incremental) Eulerian strain and the initial stress at the intermediate con®g-
uration as

e � 1
2
�Iÿ �f � fT�ÿ1�;

ên�h � gT � e � g;

ŝn � fn�h � sn � fT
n�h:

(3) Small-strain return mapping algorithm.
(4) Push forward to the current con®guration

sn�1 � g � ŝn�h � gT:

A.2. Small-strain stress-update algorithm for the J2 ¯ow theory

(1) Given �ŝn; kn� and the incremental strain ên�h, compute trial stress as

ŝtr
n�h � ŝn � an�h : ên�h;

ŝtr
n�h � ŝtr

n�h ÿ 1
3
tr�ŝtr

n�h�I;
/tr

n�h �
������������������
3J2�ŝtr

n�h�
q

ÿ r̂�kn�;

ntr
n�h �

���
3

2

r
ŝtr

n�h

ĵstr
n�hj

:
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(2) Standard return-mapping algorithm.

if /tr
n�h < 0 then

ŝn�h � ŝtr
n�h

kn�1 � kn

else

Dk�i�1� � Dk�i� � /�i�n�h�3l� h�i��ÿ1

ŝn�h � ŝtr
n�h ÿ 2lDk�i�1�ntr

n�h

kn�1 � kn � Dk�i�1�; _kn�1 � Dk�i�1�=Dt

until /n�h�ŝn�h; kn�1; _kn�1� < d

end if
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